

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES IZTACALA LICENCIATURA EN ECOLOGÍA

Sistema Escolarizado: Modalidad Presencial Programa de estudios de la asignatura

Modelos Matemáticos en Ecología II									
Clave	Semestre	Créditos	Duración	12 sem	anas				
Ciarc			Campo de	Matem	áticas				
	2	9	conocimiento	Matemáticas					
			Etapa	Básica					
Modalidad Curso () Taller () Lab () Sem (x)		() Lab () Sem (x)	Tipo	т()	P()	T/P (x)			
Carácter	Obligat	torio (x)	Optativo ()	Horas					
				Semana			Semo	Semestre	
				Teóricas 4			Teóricas	48	
				Práctic	as 4		Prácticas	48	
				Total	8		Total	96	
			Seriació	ón					
			Ninguna	()					
			Obligatoria	a (X)					
Asignatura antecedente Mod			Modelos Matemáticos en Ecología I						
Asignatura subsecuente			Ninguna						
Indicativa ()									
Asignatura antecedente									
Asignatura subsecuente									
		•							

Objetivo general:

Reconocer y simular modelos ecológicos.

Objetivos específicos:

- 1. Reconocer los principios y procedimientos básicos en el modelaje ecológico.
- 2. Determinar los alcances de los modelos matemáticos en relación a problemas ecológicos.

- 3. Determinar analíticamente los alcances de los modelos simples y de los modelos complejos en sistemas naturales.
- 4. Reconocer los cambios, avances y ventajas de utilizar modelos matemáticos para explicar procesos ecológicos.

Índice	temático
--------	----------

		Horas	
	Tema	Semestre	
		Teóricas	Prácticas
1	Modelos deterministas basados en sistemas de ecuaciones diferenciales ordinarias: modelos logísticos de interacciones	8	8
2	Análisis de los modelos con un comportamiento periódico	8	8
3	Introducción a la teoría de probabilidad	8	8
4	Modelos que aplican la teoría de probabilidad	8	8
5	Modelos logísticos	8	8
6	Introducción a los modelos estocásticos	8	8
	Subtotal	48	48
Total			96

Contenido Temático

Tema	Subtemas			
	Modelos deterministas basados en sistemas de ecuaciones diferenciales ordinarias:			
	modelos logísticos de interacciones			
	1.1 Modelo simple depredador-presa.			
	1.2 Equilibrio de modelos de múltiples poblaciones.			
	1.3 Linearización y estabilidad.			
1	1.4 Variaciones del modelo.			
	1.5 Modelo simple de competencia: Lotka-Volterra.			
	1.6 Variaciones del modelo.			
	1.7 Otros modelos de interacciones.			
	1.7.1 Modelos de mutualismo.			
	1.7.2 Modelos de interacciones huésped-parásito.			
	Análisis de los modelos con un comportamiento periódico			
	2.1 Dinámica periódica.			
2	2.2 Asignaciones de compuestos.			
_	2.3 Bifurcaciones de Hopf.			
	2.4 Constantes de movimiento.			
1	2.5 Conclusiones.			
	Introducción a la teoría de probabilidad			
	3.1 Introducción a la probabilidad.			
3	3.2 Probabilidades condicionales y teorema de Bayes.			
	3.3 Distribuciones de probabilidad discretas.			
	3.4 Distribuciones de probabilidad continuas.			
	Modelos que aplican la teoría de probabilidad			
4	4.1 Modelos de evolución molecular.			
	4.2 Distribuciones de probabilidad en genética y frecuencia de genes en las			

	poblaciones.
5	Modelos logísticos 5.1 Ecuaciones diferenciales y teoría de probabilidad.
6	Introducción a los modelos estocásticos 6.1 Cadenas de Markov. 6.2 Procesos de nacimiento y muerte. 6.3 Procesos de difusión. 6.4 Técnicas de simulación de variables aleatorias.

Estrategias didácticas		Evaluación del aprer	ndizaje
Exposición	(x)	Exámenes parciales	(x)
Trabajo en equipo	(x)	Examen final	(x)
Lecturas	()	Trabajos y tareas	(x)
Trabajo de investigación	()	Presentación de tºema	(x)
Prácticas (taller o laboratorio)	(x)	Participación en clase	()
Prácticas de campo	()	Asistencia	()
Aprendizaje por proyectos	()	Rúbricas	()
Aprendizaje basado en problemas	(x)	Portafolios	(x)
Casos de enseñanza	()	Listas de cotejo	()
Otras (especificar)		Otras (especificar)	(x)
		Reporte de prácticas	

Pertii protesiogratico			
Título o grado	Profesionistas con formación en Biología y Matemáticas Aplicadas.		
Experiencia docente	Experiencia docente de al menos un año en nivel licenciatura y/o		
	posgrado.		
Otra característica	De preferencia con estudios de posgrado.		

Bibliografía básica

Allman, E.S. & Rhodes, J.A. (2004). Mathematical models in biology: an introduction. New York: Cambridge University Press.

Legendre, P. & Legendre, L. (2012). Numerical ecology. Development in environmental modelling, Vol. 24. Netherlands: Elsevier, Ámsterdam.

Otto, S.P. & Day, T. (2011). A biologist's guide to mathematical modeling in ecology and evolution. Princeton: Princeton University.

Pastor, J. (2011). Mathematical ecology of populations and ecosystems. Wiley-Blackwell.

Rockwood, L. (2015). Introduction to population ecology (2nd Edition). Wiley-Blackwell.

Segel, L.A. & Edelstein-Keshet, L. (2013). A Primer in mathematical models in biology. Philadelphia: SIAM.

Bibliografía complementaria

Bolker, B. (2008). Ecological models and data in R. New Jersey: New Jersey: Princeton University Press

Britton, N. (2003). Essential mathematical biology. Berlin: Springer – Verlag.

Edwards, AM, Auger-Méthé, M (2019). Some guidance on using mathematical notation

in ecology. Methods in Ecology and Evolution 10: 92- 99. https://doi.org/10.1111/2041-

210X.13105.

Stevens, M. H. (2009). A Primer of Ecology with R. New York: Springer.